Ctrl+D 收藏本站 | 联系我们 | 店铺管理后台 | 手机版
服务市场

丁仲礼院士:中国完成碳中和的3大“技术需求清单”

发布时间: 2023-02-03 来源:党委中心组学习
根据我国二氧化碳的排放现状,我们就非常容易作出这样的推断:中国的碳中和需要构建一个“三端共同发力体系”。
第一端是电力端,即电力/热力供应端的以煤为主应改造发展为以风、光、水、核、地热等可再生能源和非碳能源为主。
第二端是能源消费端,即建材、钢铁、化工、有色等原材料生产过程中的用能以绿电、绿氢等替代煤、油、气,水泥生产过程把石灰石作为原料的使用量降到最低,交通用能、建筑用能以绿电、绿氢、地热等替代煤、油、气。能源消费端要实现这样的替代,一个重要的前提是全国绿电供应能力几乎处在“有求必应”的状态。
第三端是固碳端,可以想见,不管前面两端如何发展,在技术上要达到零碳排放是不太可能的,比如煤、油、气化工生产过程中的“减碳”所产生的二氧化碳,又比如水泥生产过程中总会产生的那部分二氧化碳,还有电力生产本身,真正要做到“零碳电力”也只能寄希望于遥远的将来。因此,我们还得把“不得不排放的二氧化碳”用各种人为措施将其固定下来,其中最为重要的措施是生态建设,此外还有碳捕集之后的工业化利用,以及封存到地层和深海中。

01 电力技术端的供应需求

能不能把这些分布广、能量密度低的风、光资源利用起来,并保证电价相对便宜,研发出先进的技术,尤其是储能技术是关键中的关键!
传统上,电力供应系统包括了发电、储能和输电三大部分,从现在业界经常谈到的“新型电力供应系统”的角度,还应把用户也统筹考虑在内。从实现碳中和的角度,我国未来的电力供应系统应该具备以下六方面特点。
一是电力装机容量要成倍扩大。我国目前的发电装机容量在24亿千瓦左右,考虑以下因素:
(1)未来要实现能源消费端对化石能源的绿电替代和绿氢替代;
(2)从世界大部分先发国家走过的历程看,人均GDP从一万美元到三四万美元之间,人均能源消费量还会有比较明显的增长;
(3)风、光等波动性能源的“出工能力”只有传统火电的三分之一左右。
那么我国2060年前的装机容量至少需要60亿到80亿千瓦。
二是风、光资源将逐步成为主力发电和供能资源。其中西部风、光资源和沿海大陆架风力资源是主体,各地分散式(尤其是农村)光热资源是补充。
三是“稳定电源”将从目前的火电为主逐步转化为以核电、水电以及综合互补的非碳能源为主。
四是必须利用能量的存储、转化、调节等技术,弥补风、光资源波动性大的天然缺陷。
五是火电还得有,但主要作为应急电源和一部分调节电源之用。与此同时,火电应完成清洁、低碳化改造,有条件的情况下,用天然气代替煤炭,以降低二氧化碳排放强度。
六是在现有基础上,成倍扩大输电基础设施,把西部充沛的电力输送到中东部消纳区。与此同时,加强配电基础设施建设,增强对分布式能源的消纳能力。
在这样的电力供应系统中,碳中和本身的目标要求未来电力的70%左右来自风、光发电,其他30%的稳定电源、调节电源和应急电源也要尽可能地减少火电的装机总量。正因为如此
未来需要促进发电技术、储能技术和输电技术这三方面的“革命性”进步。
发电技术要为绿色低碳电力生产提供支撑。这里面需重点促进可再生能源发电技术的进步,特别是要注重发展以下技术:
(1)光伏发电技术虽已发展到可平价上网的程度,但这类技术在降成本、增效率上还有潜力可挖;
(2)太阳能热发电技术对电网友好,既可保证稳定输出,也可用于调峰,但目前发电成本过高,未来应在材料、装置上寻求突破;
(3)风力发电技术也基本具备平价上网的条件,未来要在大功率风机制造、更高空间风力的利用、更远的海上风电站建设上下功夫;
(4)地热分布广、总量大,但能量密度太低,如要将地热用于发电,还得重点突破从干热岩中提取热能的技术;
(5)生物质能也是可再生能源,目前生物质能发电技术是成熟的,但其在总的电力供应上的占比较为有限;
(6)海洋能和潮汐能的总量不小,但其利用技术有待进步;
(7)传统的水电我国开发程度已经较高,未来在雅鲁藏布江、金沙江上游开发上还有较大潜力。
除以上可再生能源发电以外,社会公众还得接受这样的现实:要达到碳中和,核电还得较大程度地发展,因为核电应作为“稳定电源”的重要组成部分。此外,火电还得在“稳定电源”“应急电源”“调节电源”方面发挥作用,正因为如此,“无碳电力”在很长时期内是难以实现的,除非我们把火电站排放出的二氧化碳收集起来再予以封存或利用。
储能技术在未来的电力供应系统中将占有突出的位置,这是因为风、光发电具有天然波动性,用户端也有波动性,这就需要用储能技术作出调节。可以这样说,如果没有环保、可靠并相对廉价的储能技术,碳中和目标就会落空。
储能是最重要的电力灵活性调节方式,包括物理储能、化学储能和电磁储能三大类,而灵活性调节还有火电机组的灵活性改造、车网互动、电转燃料、电转热等方式和技术。
物理储能主要有四类
一是抽水蓄能电站,它是最成熟的技术,我国以东部山地为依托,已建、在建和规划中的抽水蓄能电站总量很大,但可再生能源丰富的西部如何建抽水蓄能电站还得探索。
二是压缩空气储能,主要是利用地下盐穴、矿井等空间,该类技术在我国还处在起步阶段。
三是重力储能,简单地说是利用悬崖、斜坡等地形,电力有余时把重物提起来,需要电力时把重物放下用势能做功,这类技术我国尚处在试验阶段。
四是飞轮储能,这是成熟的技术,但其能量密度不高。
化学储能就是利用各类电池,大家熟知的有锂电池、钠电池、铅酸(碳)电池、液流电池、液态金属电池、金属空气电池、燃料电池(氢、甲烷)等。不同的电池有不同的应用场景,它们在未来的电力供应系统中具有不可或缺的地位,但今后会遇到电池回收、环保处理、资源供应等问题。
电磁储能主要是超级电容器和超导材料储能,目前看,它的作用还有待观察。
现有火电机组的灵活性改造是指使其“出工能力”具备灵活性,用电高峰时机组可以发挥100%发电能力,用电低谷时只“出工”20%或30%。这个技术一旦成熟,应该非常管用,尤其在实现“双碳”目标的早中期阶段,应将其作为主打技术。
车网互动是指电动汽车与电网的互动。简单地说,今后大量的电动汽车整合起来就是一个非常庞大的储能系统,如果在电网电力有余时,它们中的一部分集中充电,而电力不足时,它们中的一部分向电网输电,这样就起到了平滑峰谷的作用。这个想法很美好,也有点“浪漫”,但如何将理论上的可能性转化为实践中的可行性,估计还得创新商业模式。
电转燃料就是把多余电力转化为氢气、甲烷等燃料,电力不足时再把燃料用于发电。
电转热储能则是用水、油、陶瓷、熔盐等储热材料把多余的电转化为热储存,需要时再为用户放热。
新型电力供应系统的第三个主要组成部分是输电网络。从实现碳中和的逻辑分析,我国未来的电网将有以下几个突出特点:
(1)远距离的输电规模将在现有的基础上增加数倍,意味着要把西部的清洁电力输送到东部消纳区,输电基础设施建设的需求巨大;
(2)为了统筹、引导大空间尺度上的发电资源和用户需求,大电网应是基本形态;
(3)贴近终端用户(如工业园区、小城镇等)的分布式微电网建设将受到重视,并将成为大电网的有效补充;
(4)为解决波动性强的可再生能源占比高、电力电子装置比例高的特点,需要在电网的智能化控制技术上实现质的飞跃。
从上面的介绍可知,建立一个新型电力系统,其实是逐步“挤出”火电的过程,或者严格地说,是一个把火电装机量占比减到最小的过程,留下的火电也得作“清洁化”改造。我国具有充足的风能、太阳能,从理论上讲,资源绝对足够。
但能不能把这些分布广、能量密度低的风、光资源利用起来,并保证电价相对便宜,研发出先进的技术,尤其是储能技术是关键中的关键!

02 能源消费端的技术需求

用绿电、绿氢等替代煤、油、气,从理论上讲是不难做到的,但工艺和设备的再造重建绝不是一件简单的事。
能源消费端的减碳有两个关键词,一是替代,二是重建。所谓替代就是用绿电、绿氢、地热等非碳能源替代传统的煤、油、气,而重建则强调在替代过程中,一系列工艺过程需要重新建立。
对此,我们可分九个领域,对能源消费端的低碳化所需研发的技术或替代方式分别作出简单介绍。
1.建筑部门应在三个方面发力。首先是对建筑本身作出节能化改造;其次是针对城市的建筑用能,包括取暖/制冷和家庭炊事等,均应以绿电和地热为主;农村的家庭用能,则可采用屋顶光伏+浅层地热+生活沼气+太阳能集热器+外来绿电的综合互补方式。
2.交通部门可着眼于五个方面。未来私家车以纯电动车为主;重卡、长途客运可以氢燃料电池为主;铁路运输以电气化改造为主,特殊地形和路段可采用氢燃料电池,同时发展磁悬浮高速列车;船舶运输行业中的内河航运可用蓄电池,远航宜用氢燃料电池或以二氧化碳排放相对较少的液化天然气作为动力;航空则可用生物航空煤油达到低碳目标。
3.钢铁行业碳排放主要来自炼焦和焦炭炼铁,它可分两阶段实现低碳化。第一阶段是对炼焦炉、高炉等的余热、余能作充分利用,同时用钢化联产的方式把炼钢高炉中的副产品充分利用起来。第二阶段是逐步用新的低碳化工艺取代传统工艺,研发和完善富氧高炉炼钢工艺,炼钢过程中以绿氢作还原剂取代焦炭,对废钢重炼用短流程清洁炼钢技术等。
4.我国建材行业的排放主要来自水泥、陶瓷、玻璃的生产,其中80%来自水泥。建材行业低碳化应从三方面研发技术,一是用电石渣、粉煤灰、钢渣、硅钙渣、各类矿渣代替石灰石作为煅烧水泥的原料,从原料利用上减少碳排放的可能性;二是煅烧水泥时,尽可能用绿电、绿氢、生物质替代煤炭;三是用绿电作能源生产陶瓷和玻璃。
5.化工排放来自两大方面,一是生产过程用煤、天然气作能源,二是用煤、油、气作原材料生产化工产品时的“减碳”,比如用煤生产乙烯,需要加氢减碳,其中加的氢如果不是绿氢,就会有碳排放,减的碳一般会作为二氧化碳排放到大气中。因此,化工行业的低碳化应从四个方面入手,一是蒸馏、焙烧等工艺过程用绿电、绿氢;二是对余热、余能作充分的利用;三是适当控制煤化工规模,条件许可时尽量用天然气作原料;四是对二氧化碳作捕集—利用处理。
6.有色工业中的碳排放主要来自选矿、冶炼两个过程,在整个冶金行业排放中,铝工业排放占比在80%以上,因为电解铝工艺用碳素作阳极,碳素在电解过程中会被氧化成二氧化碳排放。因此,冶金工业的低碳化有四步,一是在选矿、冶炼过程中尽可能用绿电;二是研发绿色材料取代电解槽中的碳素阳极;三是对电解槽本身作出节能化改造;四是对铝废金属作回收再生利用。
7.在其他工业领域中,食品加工业、造纸业、纤维制造业、纺织行业、医药行业等也有一定量的碳排放,其排放来源主要有两个方面,一是生产加工过程中用的煤、油、气,二是其废弃物产生的排放。其它工业领域的低碳化改造主要在于用绿电替代化石能源,同时做好废弃物的回收再利用。
8.服务业是一个庞大的领域,但服务业以“间接排放”为主,即服务业用电一般被统计到电力系统碳排放中,运输过程中的用油一般被统计到交通排放中,建筑物中的用能(包括餐饮业的用气)则被统计到建筑排放中,似乎“直接排放”的量并不大。但这样说,并不是说服务业可以置身于低碳化事外,恰恰相反,服务业亦有可以“主动作为”的地方,这一方面是大力做好节能工作,另一方面是尽可能用电能替代化石能源的使用。
9.农业的碳排放主要来自农业机械的使用,与此同时,农业中的畜牧养殖业以及种植业是甲烷(CH4)、氧化亚氮(N2O)的主要排放源,而这二者的温室效应能力是同当量二氧化碳的数十倍至数百倍。从这样的前提出发,农业的低碳化一是农业机械用绿电、绿氢替代柴油作动力;二是从田间管理的角度,挖掘能减少甲烷和氧化亚氮排放但不影响作物产量的技术;三是研发出减少畜牧业碳排放的技术;四是尽可能增加农业土壤的碳含量。
根据这九方面的介绍,我们可以看出:在能源消费端用绿电、绿氢等替代煤、油、气,从理论上讲是不难做到的,但工艺和设备的再造重建绝不是一件简单的事。同时我们也可以想象,这样的替代和重建一定会增加最终消费品的成本。所以说,替代和重建需要时间。

03 固碳端的技术需求

从现阶段看,只有生态固碳才可兼顾经济效益和社会效益。
提起固碳,我们首先想到的是自然过程,即通过海洋和陆地表面把大气中的二氧化碳吸收固定。但这里必须指出,人类活动每年都向大气中排放二氧化碳,这其中的一部分可以被自然过程所吸收,余下部分如不通过人为手段予以固定,则大气中的二氧化碳浓度还会逐年增高。所以我们讲固碳,主要是指通过人为努力固定下的那部分,而地球自然固碳过程则属于“天帮忙”,很难归功于具体的国家或实体。
“人努力”进行固碳一般可分两大途径:
一是生态系统的保育与修复。
二是把二氧化碳捕集起来后,或加工成工业产品,或封埋于地下或海底,这第二方面就是经常谈到的“碳捕获、利用与封存”——CCUS(Carbon Capture and Utilization-Storage)。
公众对生态系统固碳都比较熟悉,它是利用植物光合作用吸收大气中的二氧化碳,所吸收的碳有一部分长久保存在植物本身之中(比如树干),也会有一部分凋落后(比如树叶)腐烂进入土壤中以有机碳的形式得到较为长期的保存,当然有机碳也会部分转化成无机碳并同地表系统中的钙离子结合形成石灰石沉积。
地表生态系统尽管类型多样,但真正起主要作用的还是森林生态系统,这是因为森林中的各种树木都有很长的生长期,在树木适龄期内,固碳作用可持续进行;当树木进入成熟期,固碳能力就会减弱,但人们可以通过砍伐—再造林的方式继续保持正向固碳作用,而砍伐的木材可以做成家具等产品,不至于把多年来固定的碳快速返还给大气。
因此,生态系统固碳的重点在于森林生态系统,森林生态系统的管理一在于保育,二在于扩大面积。我国有大量适宜森林生长的山地,这些地区过去生态受到过较大程度的破坏,最近几十年来,一直处在恢复之中,而这些人工次生林或乔/灌混杂林都很“年轻”,有进一步发育、固碳的潜力。同时,我国又有不少非农用地可作造林之用,包括近海的滩涂种植红树林,城市乡村的绿化用地种植树木。
所以说,生态系统建设在我国实现碳中和过程中将起到至关重要的作用。
人为固碳的另一条途径是CCUS,它包括碳捕集技术、捕集后的工业化利用技术(分为生物利用和化工利用两大类)、地质利用和封存技术。对这些技术,国内外尚处在研发阶段,真正大面积的应用尚未见到。
碳捕集技术分三大类:
一是化学吸收法,它用化学吸收剂同烟道气中的二氧化碳生成盐类,再加热或减压将二氧化碳释放并收集。
二是吸附法,又细分为化学吸附法和物理吸附法。化学吸附法是用吸附材料同二氧化碳分子先作化学键合,再改变条件把二氧化碳分子解吸附并收集;物理吸附法是利用活性炭、天然沸石、分子筛、硅胶等对烟道气中的二氧化碳作选择性吸附后再解吸附回收。
三是膜分离法,即利用膜对气体分子透过率的不同,达到分离、收集二氧化碳之目的。在具体操作上,碳捕集还可分为燃烧前捕集、燃烧后捕集、化学链燃烧捕集、生物质能碳捕集、从空气中直接捕集等技术。
碳捕集后的工业化生物利用技术目前主要有四大类:
一是利用二氧化碳在反应器中生产微藻,这些微藻再用作生产燃料、肥料、饲料、化学品的原料。
二是将捕集到的二氧化碳注入温室中,用以增加温室中作物的光合作用,这个过程又可称为二氧化碳施肥。
三是把二氧化碳同微生物发酵过程相结合,生成有机酸。
四是把二氧化碳用于合成人工淀粉。
碳捕集后的工业化化工利用又分两大类技术途径:
一大类是把二氧化碳中的四价态碳还原后加甲烷、氢气等气体,再整合成甲醇、烯烃、成品油等产品。
另一大类为非还原技术,有二氧化碳加氨气后制成尿素、加苯酚后合成水杨酸、加甲醇后合成有机酸酯等技术,也有合成可降解聚合物材料、各类聚酯材料等技术。
地质利用技术也有很多类型,这些技术有的已在工业化示范中,有的尚停留在实验室探索阶段。
比如利用收集起来的二氧化碳驱油、驱煤层气、驱天然气、驱页岩气等,这属于油气开采领域的应用,这类技术的一个共性是通过生产性钻孔把超临界的二氧化碳压到地层中,利用它驱动孔隙、裂隙中的油、气流出开采性钻孔,达到油气增产或增加油气采收率的目的,与此同时,二氧化碳则滞留在孔隙、裂隙中得以长期封存。该类技术国内外已有工业应用示范。
而另一些技术则在探索过程中,比如用于开采干热岩中的地热。干热岩埋深在数千米,其内部基本没有流体存在,温度在180℃以上,开采干热岩中的热能需要打生产井并用压裂手段使岩石增加裂隙,然后在生产井中注入工作介质,让其流动并采集热量,最后从开采井中收集热量。一些研究表明:用二氧化碳作为工作介质,既起到开采干热岩热量的作用,又可把部分二氧化碳封存于地下。
地质封存技术则是把二氧化碳收集后直接通过钻孔注入地下深处或灌入深部海水中。这里要特别指出:深海对二氧化碳的溶解保存能力是巨大的。
总之,固碳的技术有多种,但这些技术不可避免地需要额外能量加入,因此有可能把最终产品的成本提高一大块。至于地质封存,尽管理论和实践上可行,但它似有“空转”之嫌。
从现阶段看,只有生态固态才可兼顾经济效益和社会效益。
文章来源:2022年第4期《党委中心组学习》

上一篇:哈尔滨工业大学马军院士团队ES&T封面:无烟煤滤料净水过程中释放多环芳烃等物质并导致消毒副产物形成

下一篇:福建省南平市延平区-环保用活性炭建设项目可行性研究报告

声明:来源标注为易炭网/easycarbon.cn的内容版权均为本站所有,如需引用、转载,请注明来源及原文链接,违者必究。如本站文章存在版权问题,烦请联系我们,本站将第一时间为您处理。

最新资讯
磁性活性炭(MAC)潜在应用价值巨大 共沉淀法为其主流制备方法
【最新专利】山西新辉活性炭申请非接触内燃式活性炭炭活化一体设备专利,避免资源浪费
【最新专利】苏州巨联申请活性炭吸附能力测试方法专利,快速测试活性炭吸附能力
【最新专利】福建韩研环保申请具有高吸附和高降解性能的活性炭制备工艺专利;南雄市绿炭再生资源有限公司申请废弃活性炭的改性再生专利
【最新专利】鑫森炭业取得抗开裂蜂窝活性炭及其制备方法专利,使热风干燥过程不变形、不开裂,成品率高
椰壳活性炭的生产及应用介绍
【最新专利】宝钢股份申请废弃活性炭与煤共焦化生产高炉用焦炭的制备方法专利,制备出一种高炉用焦炭
【最新专利】滨化股份申请一种利用活性炭吸附原理降低环氧氯丙烷色度的方法专利,降低环氧氯丙烷色度
【最新专利】鑫森炭业申请用于生产活性炭的热活化装置专利,提升活性炭生产效率
【最新专利】中科院广州化学申请一种粉末活性炭成型用粘结剂及其制备方法与应用及一种柱状碳专利,无需后续碳化、活化即可达到使用要求
增值服务

广告投放

标讯服务

下载中心

标准文档

文档资料

联系我们

easycarbon.cn(Ctrl+D 收藏)

0351-5603534

手机版

易炭网客服微信
客服微信
易炭网微信公众号
微信公众号